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LIQUID CRYSTALS, 1994, VOL. 17, No. 3,  429-436 

Effect of weak anchoring on the electric 
field induced deformations of nematic layers 

by GRZEGORZ DERFEL 
Institute of Physics, Technical University of Lbdi, 

ul. Wblczafiska 221, 93-005 Ebdi, Poland 

(Received 15 November 1993; uccepted 18 February 1994) 

The stationary deformations of nematic layers with a twisted structure are 
analysed by means of the Taylor expansion method based on catastrophe theory. 
The role of weak anchoring is investigated. Variations of the polar and azimuthal 
angles describing the surface director orientation are allowed. The stability of two 
equilibrium states, the twisted and the homeotropic, is studied. Several types of 
continuous and discontinuous transitions between them are revealed. The threshold 
voltages are calculated. 

1. Introduction 
The finite magnitude of the interaction between a liquid crystal and the electrode 

surfaces has a significant influence on the behaviour of the liquid crystal electro-optic 
cell. This influence has been studied in several theoretical publications ([ 1,2] and the 
references cited therein). 

In a previous paper [2], a method based on catastrophe theory was applied to this 
problem. The uniform planar nematic, the twisted nematic and the supertwisted chiral 
nematic were taken into account. It was assumed, that the director adjacent to the surface 
could deviate from its initial planar orientation, but did not change its azimuthal angle 
(i.e. the plane containing the director and the normal to the plates was constant). This 
is equivalent to the assumption that the infinite surface anchoring energy hindered the 
director from rotations around the normal to the cell walls, whereas tilt from the surface 
was allowed, as this deformation was related to the finite energy:Such an approach was 
also used in earlier studies [3,4]. It yields remarkable simplifications of the calculations. 
However, more recent experimental investigations [5,6] show that the energies of both 
kinds of anchoring are comparable. Therefore both modes of director deviation should 
be taken into account. In this paper this more realistic case is treated. The method used 
is the same as in [2]. It gives qualitative results concerning the stationary states of the 
system. The ideas involved are briefly mentioned in 0 2, where the present problem is 
formulated and the method of its solution is described. Section 3 contains the results 
of calculations and some remarks are given in D 4. 

2. Method 
The idea behind the method applied here is as follows. The free energy of the layer, 

G, is expressed as a function of the angles which are needed for the qualitative 
determination of the director distribution. The function G is then reduced to the 
catastrophe, i.e. to the topologically equivalent function of a standard form. The 
catastrophe yields a qualitative picture of the behaviour of the layer at small 
deformations, since it gives the number and disposition of the equilibrium states of the 
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430 G.  Derfel 

system in the vicinity of its critical points. The details of the procedure used for the 
determination of a suitable catastrophe are presented below. 

In the system considered, the nematic material, characterized by the elastic 
constants kl l ,  k2’ and k33, dielectric permittivities and el  and intrinsic pitch P = 22, 
is confined between two electrodes, placed parallel to the (xy) plane at z = 2 d/2. The 
direction of the easy axis at the bottom surface (achieved for instance by rubbing) is 
twisted in relation to that at the top surface by an angle 0. The director distribution is 
determined by the angles Q(z )  and o ( z )  between the director and the (xy) and b z )  planes, 
respectively. If the deformation are assumed to be small, they can be approximated by 
their most important Fourier components, and the angles mentioned above, which are 

(1) 

(2) 

where I) is the surface tilt angle, 5 is the amplitude of the small deformation measured 
in the plane normal to the plates, 6 the angle between the easy axis and the projection 
of the director onto the plates, measured for z = t dl2, and x the amplitude of the small 
deviation from the uniform twist. In this way, the free energy C can be expressed as 
a function of four variables: G(5t+bx6). The total free energy per unit area of the layer, 
with respect to an unimportant constant, is given by 

Q(z)  = * + 5 cos (zzld), 

w(z) = (c? - 26)dd + x sin (2nzld), 

+ cos’ 8(kt cos’ 8. + kb sin’ 0) - 
i 3 l d Z  

U’EOAE - + 2yl sin2 I) + 2 y 2  cos2 $ sin2 6, 
dZ 

- d12 1 + K sin’ 8 

(3) 

where kb = k31/klI, k, = k22/kll, ti = A E / E ~ ,  At: = &I/ - E ~ ,  Uis the applied voltage, y l  and 
y2 are the parameters which characterize the strength of the surface anchoring due to 
the surface tilt and twist, respectively. The expression for the anchoring energy (last 
two terms in (3)), defines the model potential well for the director bonded with the 
surface. It is somewhat different from the usual formula 2yl sin’ $ + 2y2 sin2 6, which 
is postulated in the literature for small angles. For $ = n/2 however, the last expression 
gives a value which evidently depends on 6, whereas the state I+!J = n/2 is homeotropic 
and identical for any 6. The modification introduced in (3) allows avoidance of this 
inconsistency . 

The behaviour of the system is investigated in the vicinity of two distinct states 
corresponding to the critical points of G defined by the set of equations 

aciay = 0, a m +  = 0, ~ C I ~ X  = 0, a m 6  = 0. (4) 

The first critical point, referred to hereafter as the lower point, is due to the 
undistorted twisted state 4 = 0, \I/ = 0, x = 0 and 6 = 61, where 61 is numerically 
calculated from the minimization condition aClaG = 0 

( 5 )  

The lower critical point is degenerate, i.e. the determinant of the Hesse matrix H 
vanishes for some sets of parameters. The threshold value of the applied voltage is the 

k,l(d/;L) + (4  - 261)/n] - y2dsin261/k11z = 0. 
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Field effects in weakly anchored nematics 43 1 

most important critical parameter, being the crucial characteristic of the cell. Its value 
can be found from the equation det H = 0 for the other fixed parameters. The behaviour 
of the system in vicinity of the degenerate critical point is given by a suitable 
catastrophe. In order to determine it, the function G(($xS)  is expanded in the Taylor 
series in the neighbourhood of the critical point 

where the new variable a =  6 - 61 was used. 
The necessary order of this expansion may be postulated a priori and all the higher 

order terms appearing during the calculations may be rejected. If the adopted order turns 
out to be wrong during the final determination of the catastrophe, the whole procedure 
must be repeated with an increased order of expansion. In this work the calculations 
were started with the sixth degree, since its correctness was proved for the simpler case 
in [Z]. 

The transformation of the function of four variables to the catastrophe is rather 
tedious. In order to shorten the calculations, another approach was applied. The 
equations 

dGIdx = 0, dGldp = 0, (7) 

where G denotes the truncated Taylor series, determine the functions x(4[, $) and a((, $) 
in implicit form. This enables one to expand these functions in power series in 5 and 
$ in the vicinity of 5 = 0 and $ = 0 

After the substitution of these series into (6), a function of only two variables is obtained 

Its values satisfy the condition (7). Therefore its extremes correspond to the extremes 
of G and the catastrophe equivalent to G can be found without severe difficulties, 
according to standard procedure given in [7]. This catastrophe describes properly the 
equilibrium states of the system. By means of a suitable change of variables, the new 
series is obtained 

in which w is the inessential variable, and u the essential one. It can be checked by means 
of numerical examples, that do2 and do4 can equal zero simultaneously, by a particular 
choice of parameters, while do6 remains different from zero. This justifies the truncation 
of the series at the sixth degree. It means, that the system is properly described by the 
butterfly catastrophe. 

The second critical point, denoted as the upper, is due to the totally uniform structure 
aligned normal to the plates. This orientation is sufficiently described by 5 = 0, = 7112, 
and the values of x and 6 need not to be specified. This is due to the fact that all the 
first derivatives of G vanish for arbitrary x and 6. However the choice of suitable values, 
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432 G.  Derfel 

denoted further as x2 and 62, is necessary, since they are involved in higher order 
derivatives, i.e. appear in all the coefficients U ~ M  of the Taylor expansion 

rjkl 

where the new variables Ct, = J/ - 7~12, q = x - ~2 and [ = 6 - 62 were introduced. 
Before the method of determining x2  and 62 is described, some properties of the function 
G, essential for the further procedure, should be mentioned. The values of G for 5 = 0, 
J/ = 7112, and for arbitrary x and 6, are equal to zero. This means that G has not any 
extreme as a function of four variables in the upper state-it is constant with respect 
to x and 6. In consequence, no finite Taylor expansion of the function (3) is equivalent 
to G in the vicinity of this state, and there is no point in transforming it to the form of 
catastrophe. Obviously, the determinant of the Hesse matrix vanishes, since all the 
second order partial derivatives, resulting from at least one differentiation with respect 
to x or 6, vanish. The critical point 5 = 0, @ = 7112, x = x2 ,  6 = 6 2  is therefore trivially 
degenerate. The equation det H = 0 does not define any set of threshold parameters. 
There is however a possibility of using another function of two variables 

For this purpose q and ( are ruled out from (1 1) by replacing them with functions ~(54)  
5(54) 

which are found in a way similar to that applied for the lower state, and satisfy the 
equations 

dGlaq = 0, aGId[ = 0. (14) 

As a result, the extremes of the function G' correspond to the extremes of the function 
G and therefore to the equilibrium states of the system. 

In general, the coefficients cf, resulting from the substitution, are complex 
combinations of uf,kl. The case i + j  = 2 is an exception, since the substitution does not 
affect the second order terms existing in (1 1) .  Therefore cv = a , , ~  for i + j  = 2 and the 
hessian matrix of G' can be constructed by use of the derivatives of the function G. Its 
determinant is generally different from zero, and the equation det H = 0 defines the 
upper threshold voltage U2. The stability of the critical point 5 = 0, 4 = 0 changes at 
Uz,  due to the bifurcation which occurs at this point. Therefore close to UZ, other critical 
points appear for which 5 # 0, 4 # 0. They correspond to the critical points of G 
determined by the equations 

i r ~ i a t  = 0, acia4 = 0, aGiaX = 0, 8 ~ ~ 6  = o (15) 

and characterized by the same values of 5 # 0 # 0 and by certain values of x # x 2  and 
6 # 62. When U tends to U2, then the upper state is approached: 5-0, 4-0, x a  x 2  

and 6 3 d2. Therefore, the set of equations (15), linearized with respect to 5 and 4 and 
taken in the limit 5 0, 4 - 0, can be used for calculating values of ~2 and h2. The 
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Field effects in weakly anchored nematics 433 

number of the equations is reduced by eliminating the electric field. The accessory 
variable a = 4/( is introduced. The numerical solution of the resulting set of equations 
gives several sets of 1 2 ,  6 2  and a, and, in turn, several values of U2. They determine 
several possible sequences of the distorted states which may start at U = U2 from the 
upper state. For this reason the biggest value of U2 determines the limit of stability of 
the upper state for A E ) ~ ,  and the smallest U2 for A&<O. The set of x2, d2 and a 
corresponding to the properly chosen threshold, should be used in the coefficients u i j ~  

and cji. This allows one to determine the catastrophe adequate for description of the 
behaviour of the system in the neighbourhood of the upper state. By the method sketched 
previously, the butterfly catastrophe was found. 

3. Results 
The behaviour of the uniform planar layer is not associated with the strength of the 

azimuthal anchoring, so the results obtained in the previous paper [2] remain valid. 
Therefore, only the twisted and supertwisted structures will be described in the 
following. 

The expansion of G((rC/x6) in Taylor series up to the sixth degree contains 57 and 
55 non-zero terms for the lower and the upper critical points, respectively. There is no 
point in writing them here explicitly. 

The strength of the boundary anchoring influences the threshold voltages and the 
way in which the deformations arise and decay. 

The deformations found in the vicinity of the threshold voltages in the lower and 
upper states are combined together to describe the behaviour of the layer. This is 
demonstrated in figure 1 by means of the angle 8, = ( + $, measuring the mid-plane 
director orientation, plotted against the reduced voltage u = U2EoAdn2k11 for various 
sets of other parameters. The left-hand part of each diagram illustrates the behaviour 
for A E < O  and the right-hand part that for AE>O.  The sets of parameters taken as 
examples, leading to each of the possible situations, are given in the table. Since all the 
results are qualitative, only the shapes of the 8,(u) dependence are drawn in the figure. 
Similar curves represent the voltage dependence of the angles rC/ x and 6. 

Six relations between the reduced threshold voltages for the lower and upper states 
can be distinguished: (i) u2>u1 >0, (ii) u2>0 and U I  < O ,  (iii) UI <u2<0,  (iv) 
ul>u2>0,  (v) u l>Oandu2<0 ,  (vi)u2<u1<0. 

The behaviours of the twisted nematic cell (@= n/2, d/A= 0) and of the 
supertwisted chiral nematic cell (@/n = - d/A) are similar. Relatively strong anchoring 
gives the case (i). The transitions may be associated with discontinuities and hystereses 
as illustrated in figure 1 (u)-(d) .  If the anchoring is of medium strength, then case (iv) 
occurs, which leads to discontinuous switching between the lower and upper states (see 
figure 1 (e ) ) .  This effect is more pronounced when 7 2  > y l .  However for high A&, 
deformation of the lower state begins continuously (see figure 1 (f)). Figure 1 (8) gives 
the example of continuous deformation of the upper state. For a weak anchoring, two 
possibilities can be distinguished. If kb differs significantly from k,, then case (v) takes 
place and both states are stable in the absence of the field. Transitions between them 
are possible given a suitable sign of A& and are illustrated in figure 1 (h).  The upper state 
is absolutely stable for AE > 0 and the lower state for A& < 0. A large twist angle @ and 
high elastic anisotropy are conducive to this behaviour. If kb = k,, then case (ii) can be 
found for a twisted nematic cell. In the absence of the field, the deformed structure is 
stable. For As > 0, the field induces a transition to the homeotropic state, whereas for 
A& < 0, the lower state is reached (see figure 1 ( i ) ) .  At very weak anchoring, the 
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900m 0" 0 mm 
0 0 

0 0 

0 900m O 0  0 m 0 

U- 
Schematic presentation of the shape of the ern (u) dependence showing the stability 

of the lower and upper states and the possibilities of transitions between them. The sets 
of parameters used as examples, leading to each situation, are given in the table. 

Figure I .  

Examples of the parameters leading to various types of behaviour of the nematic cells ( E ~  = 7, 
gi = yidlkii, g2 = '/nd/kii). 

Supertwisted nematic cell 
Twisted nematic cell @In = - d//l 

Figure kh k,  Ac: gl g2 kh k, AC gl g2 ( D / x  

1 (a)  1.8 0-7 2 10 10 I 0.7 5 10 10 1.5 
1 (b)  1.8 0.7 2 10 1 I 0.7 10 10 10 1.5 
1 (c) 1.8 0.7 1 2 20 1.8 0.7 5 10 10 1.5 
1 ( d )  3 0.7 I 2.8 28 1.8 0.7 5 5 5 1-5 
1 ( e )  1.8 0.7 2 0.7 0.7 1.8 0.7 5 2 2 1.5 
1 ( , f )  1.8 0.7 20 1 1 1.8 0.7 20 3 3 1  
1 (g) 1.5 0.4 1 3 30 I 
1 (h)  1.8 0.7 2, - 1 0.5 0.5 1.8 0.7 5, - 1 I 10 1.5 
1 ( i )  1 I 5, - 1 0.5 5 
1 (A 1 I - 1 0.4 4 
1 (k) 1.2 1 - 1 0.4 4 

homeotropic state can be stable, without a field, in the twisted nematic cell. Cases (iii) 
and (vi) are possible as shown in figures 1 (. j )  and (k) .  Transitions in both directions 
occur for AE < 0. The situations presented in figures 1 (i), ( j )  and ( k )  were not found 
in supertwisted structures, 

The thresholds for the supertwisted nematic cell are plotted versus gl = yld/kll in 
figure 2. The results are presented for three ratios between the two components of the 
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Field effects in weakly anchored nematics 435 

Figure 2 The reduced threshold voltages for the lower and upper states as functions of the 
anchoring strength gl = y ldk l l ,  for three y2/y1 values. 

rr 
2 

0 '  1 
0.1 1 10 

9, 
Figure 3 .  The zero field twist angle @ - 26, for the twisted nematic cell, plotted as a function 

of g2 = YZd/kl 1. 

surface energy: y2/yl = 10, y d y l  = 1 and y2/yl = 0.1, which cover the range of diversity 
of this ratio suggested by experiment [5 ,6 ] .  The lower threshold u1 is independent of 
yz/yl and slightly decreases with decrease of the anchoring strength. The dependence 
for u2 is much stronger. The difference between the three y& ratios is remarkable only 
for sufficiently weak anchoring, as shown in figure 2 (b). The values of the thresholds 
do not depend on the dielectric anisotropy A&. Similar dependences take place for the 
twisted nematic cell. 

If the intrinsic pitch of the chiral material enables the director distribution to fit the 
easy axes on the plates, i.e. @In = -d/A, then 6, = 0. In the opposite case, the angle 61 
differs from zero and therefore the actual twist angle @ - 2d1 depends on yz, as shown 
in figure 3 for the twisted nematic cell. The curves give only the tendency of the 61 
variations, since the surface term in expression ( 3 )  has a model form. 

4. Conclusions 
The field effects taking place under weak anchoring circumstances, determined by 

finite y l  but infinite y2, were described in [2]. The types of behaviour predicted in the 
present paper-for finite ?;?-are the same, although the conditions for their occurrence 
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436 Field ejfects in weakly anchored nematics 

may differ. The discussion concerning the results obtained in [2] is therefore also valid 
here. The butterfly catastrophe found for two critical points predicts several means of 
transitions between them. All the possibilities recognized in [ 2 ] ,  are confirmed in the 
present paper. 

To summarize, in nematic twisted structures with typical parameters, the behaviour 
shown in figure 1 (a), ( d )  and ( e )  occurs most often, when weaker and weaker boundary 
anchoring occurs. The qualitative and stationary character of the solutions shown in 
figure 1 should be stressed. In particular, the width of the hystereses shown in figures 
1 (b), (c) ,  (d ) ,  (.f) and (8) cannot be determined precisely, and some types of behaviour 
may therefore be omitted. On the other hand, the threshold voltages are determined with 
acceptable quantitative approximation. 

In [ 2 ] ,  the upper critical point was defined as 5 = 0, $ = n/2 and x = 0. The 
arbitrarily chosen value of x = 0 is however unjustified. The x 2  # 0 value, found in the 
manner described in $2, is proper. Fortunately, this omission has not a great effect on 
the final results, and the overall picture is the same. 

The behaviour described by any catastrophe is valid only in the vicinity of the 
critical point; in the present problem-for the parameters which are close to those 
assuring do2 = 0 and do4 = 0. In some cases, there is no link between the two &(u) 
dependences predicted by the butterfly catastrophe for the upper and lower states. 
However, one cannot exclude the existence of such a connection sufficiently far from 
the threshold, where a picture other than that given by the catastrophe may be valid. 
The approach adopted in the present paper does not give an unequivocal description 
in such a situation. 

It is obvious that the boundary anchoring influences the dynamics of the of the 
transitions. In particular, the relaxation of the twisted nematic cell, after switching off 
the electric field, may be rather slow under weak anchoring circumstances. In the case 
of a chiral material, one may suppose that the action of the intrinsic twist will replace 
the surface forces. 
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